It is widely accepted that high predation risk may select for group living, but predation is not regarded as a primary driver of social complexity. This view neglects the important effect of predation on dispersal and offspring survival, which may require cooperation among group members. The significance of predation for the evolution of social complexity can be well illustrated by behavioral and morphological adaptations of highly social animals showing division of labor, such as eusocial insects and cooperatively breeding fishes. By examining the diversity of social organization in a cooperative cichlid in relation to ecological variation, we show that predation risk has the greatest explanatory power of social complexity. This stresses the significance of predation for social evolution.