When machines learn like humans | Probabilistic programs pass the "visual Turing test" | WHY IT MATTERS: Digital Transformation | Scoop.it
A team of scientists has developed an algorithm that captures human learning abilities, enabling computers to recognize and draw simple visual concepts that are mostly indistinguishable from those created by humans.

The work by researchers at MIT, New York University, and the University of Toronto, which appears in the latest issue of the journal Science, marks a significant advance in the field — one that dramatically shortens the time it takes computers to “learn” new concepts and broadens their application to more creative tasks, according to the researchers.

“Our results show that by reverse-engineering how people think about a problem, we can develop better algorithms,” explains Brenden Lake, a Moore-Sloan Data Science Fellow at New York University and the paper’s lead author. “Moreover, this work points to promising methods to narrow the gap for other machine-learning tasks.”

The paper’s other authors are Ruslan Salakhutdinov, an assistant professor of Computer Science at the University of Toronto, and Joshua Tenenbaum, a professor at MIT in the Department of Brain and Cognitive Sciences and the Center for Brains, Minds and Machines.

When humans are exposed to a new concept — such as new piece of kitchen equipment, a new dance move, or a new letter in an unfamiliar alphabet — they often need only a few examples to understand its make-up and recognize new instances. But machines typically need to be given hundreds or thousands of examples to perform with similar accuracy.

“It has been very difficult to build machines that require as little data as humans when learning a new concept,” observes Salakhutdinov. “Replicating these abilities is an exciting area of research connecting machine learning, statistics, computer vision, and cognitive science.”

Salakhutdinov helped to launch recent interest in learning with “deep neural networks,” in a paper published in Science almost 10 years ago with his doctoral advisor Geoffrey Hinton. Their algorithm learned the structure of 10 handwritten character concepts — the digits 0-9 — from 6,000 examples each, or a total of 60,000 training examples.

Via Wildcat2030